Open post

Rolls‑Royce and Amentum Propel Europe’s SMR Revolution

Amentum and Rolls‑Royce SMR Forge a Defining Partnership for Europe’s Nuclear Future

A major step toward a revitalised nuclear landscape in Europe is taking shape as Rolls‑Royce SMR and Amentum formalise a partnership designed to deliver the first wave of Small Modular Reactors (SMRs) in the UK and the Czech Republic.

This collaboration marks a pivotal moment for the sector, uniting Rolls‑Royce SMR’s advanced engineering and manufacturing capabilities with Amentum’s global expertise in programme delivery and complex nuclear infrastructure. Together, the companies are positioning SMRs as a cornerstone of future clean‑energy systems across Europe.

Rolls‑Royce SMR’s appointment of Amentum as its programme delivery partner places Amentum at the heart of Europe’s first SMR deployments. The company will play a central role in integrating and overseeing all major elements of delivery, governance, construction management, and multi‑disciplinary programme execution.

With a well‑established footprint in the UK and deep technical expertise across the full nuclear life cycle, Amentum is set to guide these projects from inception to grid integration, ensuring they remain on schedule and on budget. The UK stands to benefit enormously from this union.

Rolls‑Royce SMR expects to provide up to 1.5 GW of low‑carbon power to the national grid while supporting national net‑zero ambitions. Beyond energy contributions, the programme is expected to generate more than 8,000 skilled long‑term jobs, creating significant opportunities across engineering, construction, and the wider nuclear supply chain.

Czechia will also see major investment through the deployment of up to 3 GW of new SMR‑based capacity, reinforcing the region’s commitment to clean, reliable nuclear energy.

Both organisations emphasise the strategic value of the partnership. Rolls‑Royce SMR underscores that combining its advanced manufacturing leadership with Amentum’s proven delivery capabilities will allow multiple international projects to be executed with confidence and consistency.

Amentum, meanwhile, highlights the collaboration as a catalyst for strengthening European energy security and accelerating the transition to resilient, low‑carbon infrastructure. The shared commitment reflects a vision not only to deploy early SMR projects but to lay the groundwork for a fleet‑based approach that can scale rapidly across global markets.

This next generation of nuclear technology is designed around factory‑built precision and modular construction, an approach that dramatically reduces on‑site work, minimises cost risk, and avoids the lengthy timelines that have historically challenged large nuclear builds.

Approximately 90% of each Rolls‑Royce SMR unit will be manufactured in factory conditions before being transported for assembly, enabling repeatable, standardised deployment in diverse environments.

Retaining a 470 MWe output and a service life of at least 60 years, each reactor provides reliable baseload power while benefiting from modern engineering enhancements, including innovative seismic protection systems under development in partnership with engineering specialists such as Skanska.

For the nuclear workforce, supply chain partners, and future entrants into the sector, this collaboration signals the emergence of a new industrial era. The programme will expand opportunities in advanced manufacturing, civil engineering, regulatory oversight, systems integration, digital design, and project management, fields that will underpin SMR deployment for decades to come.

As the UK and Czech Republic begin to realise their first SMR projects, the Rolls‑Royce SMR–Amentum partnership is not only reshaping the energy landscape but also redefining the scale of opportunity available to the nuclear profession.

This alliance demonstrates the powerful role that SMRs can play in strengthening energy resilience, supporting decarbonisation, and revitalising nuclear capability across Europe.

With delivery partners now aligned and early development milestones underway, the stage is firmly set for a new chapter in nuclear innovation, one driven by collaboration, standardisation, and a shared commitment to a clean‑energy future.

Picture: Rolls Royce SMR

Open post

Bulgaria Bets Big on SMRs for a Clean Energy Future

Bulgaria is charting a bold course in its nuclear landscape by embracing Small Modular Reactors (SMRs) not just as power plants, but as catalysts for energy security, decarbonisation, and high-tech growth. The spotlight is on the BWRX‑300 design from GE Vernova Hitachi, and several recent developments make this an especially exciting moment for the sector.

A Strategic Joint Venture to Launch SMRs

New JV is linked to Poland’s Synthos Green Energy (SGE) and Bulgaria’s Blue Bird Energy (BBE), a consortium anchored by Glavbolgarstroy and Asarel‑Medet, have signed a letter of intent to create a joint venture targeting up to six BWRX‑300 units in Bulgaria.

These 300 MWe reactors, harnessing passive safety and natural circulation, leverage the proven design lineage of the conventional ESBWR, offering a compact yet robust addition to Bulgaria’s nuclear fleet.

The JV’s mandate is extensive and incorporates site selection and licensing to construction, funding, and operation, designed to jumpstart a domestic SMR ecosystem.

There’s high-level momentum & global backing for Bulgaria as well as diplomatic synergy from Prime Minister Rosen Zhelyazkov and Energy Minister Zhecho Stankov engaged with GE Vernova’s Roger Martella, first in New York and later in Sofia, to explore partnerships.

These discussions followed an MoU from August 2024 between Bulgarian Energy Holding and GE Hitachi, laying a groundwork for BWRX‑300 development

With cross-border cooperation with a U.S.–Bulgaria intergovernmental agreement, signed during an IAEA conference, includes provisions for civil nuclear support, U.S. lab participation in feasibility studies, and potential funding via the U.S. Trade and Development Agency.

And why does Bulgaria’s Embracing of SMR’s Matter?

Energy stability with low emissions, economic & industrial uplift, and supply chain integration will all see a productive impact.

Bulgaria already generates ~⅓ of its electricity with two VVER‑1000 units and is building two AP1000 reactors at Kozloduy. SMRs will deliver reliable, clean baseload power while supporting grid flexibility.

These reactor platforms can energise new data centres, AI hubs, gigafactories, and hydrogen facilities, turning Bulgaria into a regional innovation powerhouse.

With local industry players in the JV, Bulgarian firms are poised to join the global SMR value chain, boosting domestic jobs and capabilities.

GE Vernova’s BWRX‑300 is already under construction in Canada, and the technology is attracting interest in Poland, Hungary, the Czech Republic, Lithuania, and Romania, underscoring its momentum across Europe.

Bulgaria’s approach is both balanced and strategic, maintaining large-core reactors at Kozloduy while advancing agile, low-carbon SMRs to complement and diversify its nuclear capacity.

With active engagement from U.S.-based U.S. national labs and financial channels, Bulgaria is aligning global nuclear expertise with local readiness, ensuring a well-rounded deployment pathway.

In conclusion

Bulgaria’s nuclear vision is crystal clear – harmonising legacy nuclear strengths with cutting edge SMR innovation to forge a resilient, clean, and future-ready energy system. With its cross-border partnerships, industrial leadership, and technology-forward mindset, Bulgaria is positioning itself to become a beacon of nuclear excellence in Southeastern Europe and a potential model for global SMR deployment.

If you want a deeper dive into BWRX‑300 safety features, licensing trajectories, or how SMRs integrate with national energy frameworks, we’d love to hear from you.

Sources: nucnet.org, bta.bg, gbs-bg.com, neimagazine.com, economic.bg, world-nuclear-news.org

Picture: Bulgarian Energy Ministry

Open post

NRC Extends Clinton and Dresden Licenses to 2050

Constellation Energy has secured a major regulatory victory, with the U.S. Nuclear Regulatory Commission (NRC) granting 20-year license renewals for Clinton Unit 1 and Dresden Units 2 and 3, marking crucial milestones in the ongoing push to sustain and extend nuclear power’s contribution to the energy mix.

Beginning with the Nuclear Engineering International article on “Life ex for Clinton and Dresden,” we learn these Illinois reactors, once slated for shutdown, are now cleared to operate well into mid-century; Clinton until 2047, Dresden 2 until 2049, and Dresden 3 until 2051. This regulatory win caps a comprehensive assessment of safety, equipment integrity, and environmental impacts, essential benchmarks underpinning the renewals.

Behind the scenes, Constellation has invested more than $370 million across both sites, upgrading transformers, chillers, feedwater systems, and polisher units to enhance reliability, efficiency, and safety standards. These upgrades are not just technical necessities; they signal a strategic bet on nuclear’s enduring role in clean energy portfolios, and bolster grid stability.

The nuclear project also embodies broader economic and social benefits. These extended licenses help safeguard over 2,200 family-sustaining jobs and preserve nearly $8.1 billion in federal, state, and local tax revenues. Furthermore, a landmark 20-year power purchase agreement with Meta provides Clinton with essential revenue certainty following the sunset of Illinois’ Zero Emission Credit (ZEC) scheme in 2027. These contracts are emblematic of how corporate partnerships are reshaping the economic viability of nuclear operations.

The NucNet report emphasises how this trio of license renewals adds to a growing cohort, thirteen reactors secured multi-decade extensions in 2025 alone, offering over 12 GW of sustained, carbon-free energy capacity for roughly 10 million homes. This reflects a concerted effort by the NRC to streamline approvals and underscore long-term energy resilience.

Finally, the Constellation press release reiterates the NRC’s commitment not only to stringent safety standards but also to process efficiency. With these decisions, Clinton and Dresden are poised to supply clean, dependable power while underpinning local economies and preserving critical industry talent.

By extending these plants into the 2040s and 2050s, Constellation is demonstrating that nuclear can successfully compete in today’s energy markets, especially when backed by regulatory foresight, strategic capital investment, and future-facing offtake agreements.

This story offers rich insight for nuclear careers professionals; maintaining existing fleet infrastructure represents a pivotal career pathway, as nuclear operators, regulators, and suppliers drive the twin missions of extension and modernisation.

Sources: constellation energy, energyonline.com, nucnet.org, power-eng.com, neimagazine.com, nrc.gov

Picture: Constellation

Open post

Xudabao 4 Modular Construction

What’s Happening at Xudabao 4?

  • Xudabao Nuclear Power Plant in Liaoning Province is advancing with Unit 4, which is part of a series of large-scale reactors using VVER-1200 technology supplied by Russia’s Rosatom.
  • Recent announcements highlight:
    • Civil construction milestones: Reactor building and containment structures progressing rapidly.
    • International collaboration: Russian technology integrated with Chinese project management and supply chains.
    • Strategic energy goals: China is accelerating nuclear deployment to meet carbon neutrality targets by 2060.

Connecting to UK Modular Construction

While China is building gigawatt-scale reactors, the UK is pioneering modular construction through:

  • Hinkley Point C: Using modular assembly for major components to reduce on-site complexity.
  • Sizewell C: Expected to replicate modular efficiencies.
  • SMRs (Small Modular Reactors): Rolls-Royce-led program aiming for factory-built modules for faster deployment.

Why this matters for nuclear careers:

  • China’s approach shows the continued relevance of large-scale nuclear expertise globally.
  • UK’s modular trend creates demand for new skills: digital design, off-site fabrication, logistics, and advanced QA/QC processes.
  • Professionals who understand both traditional and modular methods will be highly sought after as the industry diversifies.

Global nuclear strategies are diverging, China is scaling up with mega-reactors, while the UK is innovating with modular builds. For professionals, this means opportunity: mastering modular construction techniques and digital workflows will be key to driving efficiency and sustainability in the next generation of nuclear projects.

Picture: Rosatom

Open post

DOE Gives $1 billion loan to Three Mile Island

Constellation Energy is financing Crane Clean Energy Center, formerly known as Three Mile Island (TMI-1), via the Department of Energy (DOE).

It’s a big commitment from the DOE towards restarting the site as part of a 20-year power purchase agreement to power Microsoft’s data centres.

There is still a wait for state permitting, recommissioning work, and the Nuclear Regulatory Commission’s approval.

DOGE downsizing has threatened staff jobs at the Loan Programme Office (LPO) and despite these challenges, the Trump administration is leveraging the LPO to move along his May executive orders.

Due to other positive plant restarts such as Palisades led by Holtec and Duane Arnold led by NextEra Energy, we are remaining optimistic that Crane will also be able to push forward with work.

Source:https://www.ans.org/news/2025-11-20/article-7570/crane-restart-boosted-by-1b-lpo-loan/

Picture: Constellation

Open post

The Nuclear Space Race

The race to space is on!

The show case of power is for all to see as the U.S., Russia and China all flaunt their intentions to be the first to build a nuclear power plant on the moon.

NASA, Roscosmos and the CNSA are the names involved. The latter two are working in partnership to deploy a reactor to power their planned Lunar Research Station, and NASA’s plans would provide ~100kw of electrical power while heating a base camp for the crews of the lunar-landing Artemis missions.

There have been setbacks including NASA’s budget or lack thereof, which is of course a huge issue with a project of this size and complexity. Russia has old, but reliable technology, while China has new yet untested technology, so this pairing could be powerful.

As this race continues, there is also the large task of how we design and build new nuclear power plants on our home planet. There is also the focus on defence technology including the use of autonomous systems, quantum computing, and laser systems all while ensuring we are utilising sustainable practices.

Will this happen by the current 2030 timeline? We won’t hold our breath, but we look forward to seeing what’s next for human and nuclear space exploration.

“That’s one small step for [a] man, one giant leap for mankind” – Neil Armstrong

Sources: The American Nuclear Society, Space.com, Power Technology

Picture: Lockheed Martin

Open post

UK Government Nuclear Taskforce Findings

The UK’s nuclear regulatory regime is highly effective at ensuring safety and is regarded as world-leading in many respects, particularly its goal-based approach, regulatory expertise, transparency, stakeholder engagement, and active international collaboration.

However, primary challenges include the following areas: 1. unnecessary slowness, inefficiency, and cost, 2. risk management & proportionality, 3. complexity of regulatory & planning landscape, 4. enabling delivery in the planning regime, 5. capacity, capability & culture, 6. international harmonisation, 7. insufficient understanding of the cost of delays.

  1. Feedback highlights systemic delays, bureaucratic overlap, and escalating costs that rarely provide meaningful safety or environmental benefits
  2. Interpretation of the ALARP (“As Low as Reasonably Practicable”) principle fosters a risk-averse culture and excessive conservatism. Similar issues exist in environmental assessments
  3. The multiplicity of regulators and overlapping obligations create costly duplication, inconsistent interpretations, and unpredictable outcomes.
  4. The current NSIP planning regime and related regulations are outdated, particularly in their treatment of emerging technologies like SMRs and AMRs. They lack flexibility and fleet-mode efficiency.
  5. There is a shortfall of SQEP (Suitably Qualified and Experienced Personnel), along with ageing workforce, over-reliance on consultants, salary challenges, and risk-averse organisational cultures
  6. Lack of alignment with international regulatory frameworks causes unnecessary costs and duplicative approval processes. The Taskforce plans to explore opportunities for recognition of overseas approvals.
  7. Regulatory decisions often overlook the significant financial and opportunity costs of delayed projects, leading to an imbalance between safety measures and project viability.

Next Steps and Priorities.

Strategic Government Direction – Ministers should provide clear strategic guidance to regulators and operators to ensure delivery is safe, efficient, and cost effective.

Consultation & Evidence Gathering – The Taskforce is holding engagement sessions and workshops to gather input on potential policy adjustments.

International Benchmarking – A detailed comparison with overseas systems will help identify where harmonisation could yield benefits.

Economic Impact Analysis – The costs and benefits of changes will be quantified to support the case for reform.

The interim report acknowledges a strong foundation in the UK’s nuclear regulation but calls for a once-in-a-generation reset across six core reform areas aimed at delivering faster, more cost effective, and scalable nuclear projects without compromising safety.

To view the full report; https://www.gov.uk/government/publications/nuclear-regulatory-taskforce/nuclear-regulatory-taskforce-interim-report

24/11/25 release; https://www.gov.uk/government/news/taskforce-calls-for-radical-reset-of-nuclear-regulation-in-uk

Picture: gov.uk

Open post

EIB Invests in Finland’s Olkiluoto Nuclear Power Plant

Two nuclear power plants will get an upgrade for reactor 1 & 2 with a €90 million backing from the European Investment Bank (EIB).

Finnish energy supplier Teollisuuden Voima Oyj (TVO) will receive the funding which they will implement into a multi-year timeline.

The upgrades are required under Finnish and EU safety legislation to ensure continued safe and efficient operation.

“By supporting safety upgrades at Olkiluoto, we are helping Finland strengthen its energy mix with reliable, low-carbon power,” said EIB Vice-President Karl Nehammer. “This investment supports Finland’s energy independence and contributes to the EU’s goals of ensuring secure and clean electricity for homes and businesses.”

Olkiluoto is the construction site for the world’s first final nuclear waste disposal facility, and it also produces 28% of Finland’s electricity needs.

Read more; https://www.eib.org/en/press/all/2025-420-eib-backs-upgrades-of-finland-s-olkiluoto-nuclear-power-plant-with-eur90-million-in-financing

Picture: TVO

Open post

Kansai Electric to Restart 44-year-old Reactor

A next generation reactor plan is underway by Kansai Electric Power to restart the 44-year-old Mihama reactor based in Fukui Prefecture, 300-miles west of Tokyo.

The site survey has begun analysing geological conditions to determine the feasibility of constructing a new power plant. Materials and equipment have been transported to the areas.

The survey will continue until circa 2030 with several stages: a boring survey, field examinations, collecting rock samples, and excavating tunnels.

Pictures: Kansai Electrical Power/Mihama Power Plant

Open post

Nuclear Component Manufacturing MoU Signed

BWX Technologies and Rolls-Royce SMR announce MoU signing for the manufacture of key nuclear components.

BWXT is in a powerful global position when it comes to enabling advanced nuclear developers to fulfil their growing demands. The Canadian subsidiary has been producing steam generators for over 60-years and has already supplied 315 steam generators around the world.

Each RR SMR reactor uses 3 steam generators to generate 470 MWe while utilising its pressurised water system. This MoU could include supporting the global roll out of Rolls-Royce’s SMR technology worldwide.

Collaboration is key when it comes to advanced technology and the nuclear industry. The power of a strong manufacturing partnership cannot be understated and with the increased focus on clean, reliable energy, this announcement could prove to be a pivotal move for both companies.

Official release; https://www.bwxt.com/bwxt-and-rolls-royce-smr-sign-agreements-advancing-key-nuclear-component-manufacturing/

Picture: BWXT

Posts navigation

1 2
Scroll to top